Relational graph data management on the edge: Grouping vertices' neighborhood with Edge-k

نویسندگان

  • Lucas C. Scabora
  • Paulo H. Oliveira
  • Daniel dos Santos Kaster
  • Agma J. M. Traina
  • Caetano Traina
چکیده

As the amount of data represented as graph grows, several frameworks are employing relational databases to manage them. However, the existing solutions store graphs creating a row for each edge in an edge table. In this paper, we propose Edge-k, a novel storage approach that combines additional columns in the edges table, allowing to tune the number of edges stored in a single row by taking into account the overall neighborhood of the vertices, thus providing a better table organization. Compared to the existing approaches in the literature, experiments reveal that our proposal was able to reach a speedup of 66% over a representative real dataset and up to 57% in synthetic datasets when processing Single Source Shortest Path queries. Hence, our solution advances the state of the art in the context of graph data management within relational databases systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS

In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy  sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...

متن کامل

Distinguishing number and distinguishing index of natural and fractional powers of graphs

‎The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$‎ ‎such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial‎ ‎automorphism‎. ‎For any $n in mathbb{N}$‎, ‎the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...

متن کامل

On exponential domination and graph operations

An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v  in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017